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9.4.1 ROTATIONAL MOTIONM34

9.4.1.1 Rotational Quantities

When an object spins, it is said to undergo rotational motion. The axis of rotation
is the line about which the rotation occurs. A point on an object that rotates about a
single axis undergoes circular motion around that axis—i.e. the point travels in a
circle around the axis of rotation.

In science, we often measure angles in radians, rather than degrees. A radian (rad) is
an angle whose arc length is equal to its radius (~57.3°). Thus, there are 2π radians in a
circle:

2π rad = 360°

The radian is a pure number, with no dimensions, since it is the ratio of an arc length
(a distance) to the length of a radius (also a distance).

9.4.1.1.1 Angular Displacement

Angular displacement describes how much an object has rotated:

angular displacement in radians
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9.4.1.1.2 Angular Speed

Angular speed describes how quickly rotation occurs, or the rate of rotation:
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9.4.1.1.3 Angular Acceleration

Angular acceleration occurs when angular speed changes:
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9.4.1.1.4 Equations of Motion

Rotational and Linear Kinematic Equations

Rotational motion with
constant angular acceleration

Linear motion with constant
acceleration
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9.4.1.1.5 Tangential Speed

The tangential speed of an object rotating about an axis is simply the instantaneous
linear speed of that object, directed along the tangent to the circular path of the object.

tan tangential speed dis ce from axis angul= × aar speed

v = rt θ

9.4.1.1.6 Tangential Acceleration

Tangential acceleration is the instantaneous linear acceleration of an object directed
along the tangent to the object’s circular path.

tan tangential acceleration dis ce from axis= ×× angular acceleration

a = rt α

9.4.1.1.7 Centripetal Acceleration

Centripetal acceleration is the acceleration directed towards the centre of a circular
path.
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9.4.1.1.8 The Force that Maintains Circular Motion

The net force on an object directed towards the centre of the object’s circular path is
the force that maintains the object’s circular motion.

force that ma ains circular motion massint = ××
(tan )
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circular motion massint = ×× ×tan ( )dis ce from axis angular speed 2
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9.4.1.2 Torque

Torque is a measure of the ability of a force to rotate an object around some axis. How
easily an object rotates depends not only on how much force is applied but also on
where the force is applied. The farther the force is from the axis of rotation, the more
torque is produced, and the easier it is to rotate the object. The perpendicular distance



Science Program Outline—Year 9

11-Mar-09 Rotational Motion 3

from the axis of rotation to a line drawn along the direction of the force is called the
lever arm, or moment arm.

The magnitude of a torque is also dependent on
the angle between the force and the lever arm.

torque force lever arm= ×
sinτ θ= Fd( )

The illustration shows a wrench pivoted around
a bolt.. In this case, the applied force acts at an
angle to the wrench. The quantity d is the
distance from the axis of rotation to the point
where force is applied. The quantity d(sinθ),
however, is the perpendicular distance from the
axis of rotation to a line drawn along the
direction of the force, so it is the lever arm.

The SI unit for torque is the N•m.

9.4.1.3 Inertia

9.4.1.3.1 Moment of Inertia

Moment of inertia, which resists
changes in rotational motion, is the
rotational analogue of mass, which
resists changes in translational
motion There is, however, a
fundamental difference between the
two: mass is an intrinsic property of
an object, but the moment of inertia
is not. The moment of inertia
depends both on the mass of an
object, and the distribution of its
mass about its axis of rotation. The
further the mass of an object is
distributed from its axis of rotation,
the greater its moment of inertia and
the more difficult it is to rotate.

The units for moment of inertia are
kg•m2.

9.4.1.3.2 Rotational Equilibrium

If the net force on an object is zero, the object is in translational equilibrium. If the net
torque on an object is zero, the object is in rotational equilibrium. For an object to be
completely in equilibrium, it must be in both translational and rotational equilibrium:
both the net force and the net torque must be zero.

9.4.1.3.3 Newton’s Second Law for Rotation

Just as Newton’s Second Law can be expressed by the equation:

F = manet
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when considering linear motion, for rotating motion it can be expressed as:

net torque = moment of inertia angular accele× rration

T = Inet α

9.4.1.4 Angular Momentum

For rotary motion, the relationship between impulse and the change of angular
momentum is similar to that for linear motion. Using the symbols for rotary motion,
the equation becomes

Tt = Iωf - Iωi

where Tt is the angular impulse; and
Iωf - Iωi is the change in angular momentum.

The dimensions of both angular impulse and angular momentum are kg·m2/s. Just as
the linear momentum of an object is unchanged unless a net external force acts on it,
the angular momentum of an object is unchanged unless a net external torque acts on
if. This is a statement of the law of conservation of angular momentum.

A rotating flywheel, which helps maintain a constant angular velocity of the crankshaft
of an automobile engine, is an illustration—the rotational inertia of a fly-wheel is large.

Consequently torques acting on it do not produce rapid changes in its angular
momentum. As the torque produced by the combustion in each cylinder tends to
accelerate the crankshaft, the rotational inertia of the flywheel resists this action.

Similarly, as the torques produced in the cylinders where compression is occurring tend
to decelerate the crankshaft, the rotational inertia of the flywheel resists this action and
the flywheel tends to maintain a uniform rate of crankshaft rotation.

If the distribution of mass of a rotating object is changed, its angular velocity changes
so that the angular momentum remains constant. A skater spinning on the ice with
arms folded turns with relatively constant angular velocity. If she extends her arms, her
rotational inertia increases. Since angular momentum is conserved, her angular velocity
must decrease.

9.4.1.5 Kinetic Energy in Rotational Motion

Rotating objects possess kinetic energy, even though they may not be changing
position.

When only the net force and torque are considered in these equations, all of the work
done to produce rotation appears as kinetic energy. Since for rotational motion:

W T= ∆θ

the equation for kinetic energy is:

E I= 1
2

2ω

The wheel of a moving car has both linear motion and rotational motion. The wheel
turns on its axle as the axle moves along parallel to the road. The kinetic energy of such
an object is the sum of the kinetic energy due to linear motion and the kinetic energy
due to rotary motion:

E mv I= +1
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9.4.1.6 Work in Rotational Motion

To compute the work done in rotary motion, we use the formula:

W Fr= ∆θ

Furthermore, torque is the product of a force and the length of its torque arm. In
Figure 9.4.1.1, the torque arm is the radius of the circle, so:

T Fr=

Figure 9.4.1.1
The work done on the wheel is equal to the
product of the applied force, F, the radius of
the wheel, r, and the displacement of the
rim, ∆θ.

The work equation can then be written:

 W T= ∆θ
which means that the work done in rotary motion can be computed by finding the
product of the torque producing the motion and the angular displacement in radians.

9.4.1.7 Power in Rotational Motion

Power in rotational motion can be computed in the same way as work. Substituting the
expression for work in rotational motion, T∆θ, the power equation becomes:

P
T
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∆
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The time rate of angular displacement, ∆θ/∆t, is called the angular velocity, ω. For
rotational motion, the expression for power then becomes:

P T= ω

Which means that the power required to maintain rotational motion against an
opposing torque is equal to the product of the torque maintaining the rotary motion
and the constant angular velocity.

9.4.1.8 Spinning Objects and Gyroscopes

The axis of a spinning object maintains its direction. To change this direction a force
is required.

The tendency for a spinning object to maintain its direction of spin accounts for
• the constant tilt of the earth's axis

• the use of a gyroscope as a compass



Science Program Outline—Year 9

6 Rotational Motion 11-Mar-09

References

Holt Physics, Serway, R.A. and Faughn, J.S. (Holt, Rinehart and Winston, 2000)
[ISBN 0-03-056544-8]  Ch. 7-8

Work directly from text, with exercises:

7 Rotational Motion and the Law of Gravity
7.1 Measuring rotational motion
7.2 Tangential and centripetal acceleration

7.3 Causes of circular motion

8 Rotational Equilibrium and Dynamics
8.1 Torque

8.2 Rotation and inertia

8.3 Rotational dynamics


